

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Building a web scraper

Welcome to the Mizzou/IRE course on building a web scraper, being held in Columbia from Sept. 4-7, 2014.

Although the stated goal of this course is to introduce the concepts of web scraping, we will also spend time covering programming fundamentals that can be applied to other problems, from data analysis to web development.

Course logistics

The course will begin Thursday, Sept. 4, and end on Sunday, Sept. 7. It will be held in the Lambert Room, which is room 200 in the Reynolds Journalism Institute building on 9th Street.

The format of the course is subject to change, but the rough schedule looks like this:

Thursday, Sept. 4, 6 - 8 p.m.: Introductions, computer setup and covering the basics of command line navigation.

Friday, Sept. 5, 9 a.m. - 5 p.m.: More command line basics; Python programming basics; a review of HTML/CSS and Javascript in the context of web scraping; and building our first web scraper.

Saturday, Sept. 6, 9 a.m. - 5 p.m.: Build a web scraper on your own (!) and learn about more sophisticated scraping techniques, such as manipulating forms.

Sunday, Sept. 7, 9 a.m. - Noon: Questions, review and wrapup.

We’re keeping class notes and tutorials in the notes folder [https://github.com/ireapps/scraping-class/tree/master/notes] of this repo.

Software requirements

This course will be taught primarily using the Python programming language. In addition, we’ll be using two open source Python modules that greatly simplify the web scraping process – BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/], which makes it easy to parse and sort through HTML files; Requests [http://docs.python-requests.org/en/latest/], which handles HTTP (web) requests; and mechanize [http://wwwsearch.sourceforge.net/mechanize/], which allows you to emulate a web browser from within your Python programs.

We will need some place to edit and write code. If you don’t already have a code editor, we recommend you explore Sublime [http://www.sublimetext.com/2].

In addition to Python, we’ll also be making use of the Chrome web browser. Although it isn’t required, we’d also recommend you check out git [https://help.github.com/articles/set-up-git], version control software so you can download the course materials after you leave.

No worries if you don’t have this software already installed. We’ll help you set up everything on Thursday evening.

Got a Windows computer? Here’s what you need to install [https://github.com/ireapps/scraping-class/blob/master/notes/setting-up-windows].

Got a Mac? Here’s what you need to install [https://github.com/ireapps/scraping-class/blob/master/notes/setting-up-mac].

Contact

This course will be taught primarily by Chase Davis, of The New York Times; Jackie Kazil, formerly of The Washington Post; and Sisi Wei, of ProPublica. If you have any questions, you can reach us here:

	Chase: chase.davis@gmail.com

	Jackie: jackiekazil@gmail.com

	Sisi: me@sisiwei.com

Previous courses

Oct. 10-13, 2013, taught by Chase Davis, Jackie Kazil, and Matt Wynn

Class Notes

This folder contains notes for the scraping class in order class progression.

	Setup

	Mac [https://github.com/ireapps/scraping-class/blob/master/notes/setting-up-mac] – uses your default Python installation for simplicity

	Windows [https://github.com/ireapps/scraping-class/blob/master/notes/setting-up-windows]– uses Cygwin [https://www.cygwin.com/] to match up the commandline w/ what we are doing on Mac.

	Command lines basics [https://github.com/ireapps/scraping-class/blob/master/notes/command-line-basics]

	Python Basics [https://github.com/ireapps/scraping-class/blob/master/notes/python-basics]

	Github Basics [https://github.com/ireapps/scraping-class/blob/master/notes/github-basics]

Additionally, we have more detailed tutorials for things we covered briefly:

	Inspecting a webpage [https://github.com/ireapps/scraping-class/blob/master/notes/inspecting-webpage]

	How to ask questions when you need help [https://github.com/ireapps/scraping-class/blob/master/notes/how-to-ask-questions]

Finally, here’s some extra info:

	Helpful links [https://github.com/ireapps/scraping-class/blob/master/notes/helpful-links]

Note: Let us know if we can improve these notes.

Navigating the command line

Working with Python (and pretty much any other programming language) means becoming comfortable with your computer’s command line environment. If you haven’t seen it before,
it looks something like this:

[image: ../_images/de4fcdfeb495955f7891fa647b7d992e481148c9.png]OSX terminal window

In basic terms, the command line allows you to communicate with your computer at a lower level that is more explicit than the user-friendly graphical environments that you typically
use. This has both advantages and disadvantages. The good thing about learning a little about the command line is that is enables you to configure your computer in new ways, and to
run software that simply doesn’t work in a graphical environment. The downside is that it takes a little time to learn. Here we’ll walk you through most of the basics you’ll need to know to succeed in this class.

Opening the command line

Both Windows and OSX have built-in tools for accessing the command line.

On OSX, click on the Spotlight icon at the upper-right hand corner of your screen and type Terminal. You should see a program with the same name appear. Click on it to open your command prompt. However, to take that one step further, we recommend using a piece of software called iTerm2, which can be downloaded and installed here [http://www.iterm2.com/#/section/home].

On Windows, navigate to the Start Menu and find the box called Run. Click on it. In the box that appears, type the letters cmd. This should open up your command prompt.

Basic commands (OSX)

Most of what you’ll be doing from the command line at this point will be navigating through directories and running Python files. These actions require only a few basic commands, which I’ll cover here. Windows and OSX have slightly different syntaxes for their terminal commands, so we’ll go over OSX first.

Listing and changing directories

Once your terminal window is open, type pwd and you should see a directory path returned. Something like /Users/whatever_your_username_is. PWD stands for “present working directory.” It’s basically your current location relative to the root of your filesystem. It’s easy to lose track of which folder you’re in when you’re working from the command line, so it can be a helpful tool for finding your way. In this case, you’re in the default directory for your username on the computer, also known as your home directory.

In order to see all the files and folders in your home directory, type the ls command. Once you do that, you should see a list of files and folders appear, such as Downloads, Documents, Desktop, etc. These should look a little familiar. The command line is just another way of navigating the directory structure you’re probably used to seeing when you’re clicking around your Mac.

To take that point one step further, let’s go into the Desktop folder. In order to change directories from the command line, use the cd command, along with the directory you want to change to. In this case cd Desktop will take you into the desktop. Type ls again to list the contents of the folder, and you should find that they mirror what you see when you look at your desktop.

Now let’s move back to our home folder. Again we’ll use the cd command, but with a little twist. If you type cd .. and hit enter, you’ll notice that you move back to the home directory that you were just in. When you’re working from the command line, it helps to think of your directory structure as a tree. Navigating through the directories is like going higher and lower on various branches. The convention for moving backwards is the .. notation.

Creating and deleting files

You might also find it useful sometimes to create files and directories from the command line. Let’s create a folder called “apps” under our home directory that we can use to store code from this class. The command for doing that is simply mkdir apps with mkdir being short for “make directory.” If you type ls again, you should see your new apps directory listed along with the files and folders from before.

The next step is to navigate into our apps directory and make a file. As before, use the cd apps command to enter your apps directory. If you type ls you’ll notice that nothing is there. That’s because all we’ve done so far is create a directory, but we haven’t put any files in it yet. You won’t have to do this very often, but the command for creating a blank file in OSX is called touch. Let’s create a test python file that we can use later: touch test.py. Notice the .py file extension. It’s extremely important when working from the command line to be mindful of file extensions. The .py notation tells our computer that this is a Python file, meaning it needs to be run by the Python interpreter. You’ll see more about what that means later. For now, if you type ls again, you should see the file in your apps directory.

The final task you might want to perform from the command line in this class is deleting files. Note that this must be done with caution. Files you delete from the command line DO NOT go into the recycle bin. They are gone. Forever. So don’t delete anything this way unless you’re absolutely sure you know what you’re doing. That said, the command is very simple. First, let’s create a new file to delete with touch deleteme.py. Now to delete it, simply type rm deleteme.py

Quick review

Really, that’s most of what you should need to navigate the command line for this class. As a quick review:

 	Command
 	Example
 	What it does
 	Notes

 	pwd
 	pwd
 	Shows your present working directory
 	Useful for keeping track of where you are

 	ls
 	ls
 	Shows the contents of the current directory
 	Can also use ls -a or ls -l to show more information about files

 	cd
 	cd Desktop
 	Changes directories
 	Use cd ..``` to move backwards

 	mkdir
 	mkdir new-directory
 	Creates a new directory
 	

 	touch
 	touch test.py
 	Creates a new file
 	

 	mv
 	mv test.py ./Desktop
 	This isn't covered above, but mv moves or renames a file.
 	

 	rm
 	rm test.py
 	Deletes a file
 	Use with extreme caution. Once a file is deleted this way, you can't get it back.

Basic commands (Windows)

The principles of working from the command line are the same in Windows as they are on Macs. The only thing that’s different is the syntax. Here’s a rundown of the equivalent commands:

 	OSX command
 	Windows equivalent

 	pwd
 	cd (with no arguments)

 	ls
 	dir or dir -p

 	cd
 	cd followed by the directory name (ex. cd Desktop)

 	mkdir
 	md

 	touch
 	None (sorry!)

 	mv
 	move

 	rm
 	del

Tips and tricks

Working from the command line can be difficult and tedious at first. Here are a few tips for making your command line lives a little easier:

Tab completion: It’s very easy to typo commands, which can lead to errors and unintended consequences. One way of helping to avoid that problem is using tab completion, which allows the computer to finish typing a command that you have begun. Say you’re in your home directory and want to go to the Desktop – you’d type cd Desktop, right? You could also type cd Des <tab> and the computer would fill out the remaining text to spell “Desktop”. This is a huge time-saver, especially when you’re typing long directory paths (think something like cd Desktop/projects/apps/django/test-app/test/apps/models.py). Here’s a demo [http://www.youtube.com/watch?v=N8TaSgKJ-LM] of tab completion in action.

Go straight home: Your home directory is sort of like True North in command line world. It’s a great way to orient yourself if you end up lost in the file system. In OSX, no matter where you are in the directory structure, you can immediately get back home by either typing cd or cd ~/.

Guides and cheat sheets: Here’s [http://wiseheartdesign.com/articles/2010/11/12/the-designers-guide-to-the-osx-command-prompt/] a useful guide for simple command line syntax on OSX and Linux. And here’s [http://www.bleepingcomputer.com/tutorials/windows-command-prompt-introduction/] another one for Windows.

Intro to Github

Git [http://git-scm.com/] and Github [https://github.com/] (or the like, i.e. Gitlab [https://www.gitlab.com/]) are tools to help you manage your code and collaborate.

Git [http://git-scm.com/] is an open source tool that allows you to store code, track the changes that you made, and collaborate with others.

Github [https://github.com/] (or the like, i.e. Gitlab [https://www.gitlab.com/]) act as an external place that you can use get in a place that is accessible to others. As you may have noticed, this project is hosted on Github.

These tools are great tools that you should have in your tool belt. These notes, walk through the very basic usage of Git and communities like Github.

Why are these tool important?

Git is easiest to understand through online communities such as Github. On Github, you can find the code for a lots of projects that you can use! Here are some interesting ones:

	MIZZOU/IRE Scraping Class [https://github.com/ireapps/scraping-class]
Here, you will find the code that we worked on during the class.

	Requests library [https://github.com/kennethreitz/requests]
Requests is the python library that we used in the class.

	CSVkit [https://github.com/onyxfish/csvkit]
CSVkit is another tool that you can use to interact with csvs.

	United States [https://github.com/unitedstates/]
This is a repo of data that is across the whole country.

	Derek Willis [https://github.com/dwillis]
A very active journalist on github.

	etc.

Essentially, this repositories of code are available for you to use and contribute to OR you can create your own and share it with others.

Lastly, you can use Github to store your own code for your own sanity and tracking. A lot of people use this space as a scratch pad, so don’t worry about sharing you project while it is in development.

However, if you want to hide your projects, you can do one of the following:

	Free private repositories for eduction: Github Education [https://education.github.com/]

	Pay monthly fee for github: Github [https://www.github.com/]

	Free private repositories: Join Gitlab [https://www.gitlab.com/]

Setting up

So, how do I get started?
Tell me more!!

 [image: Tell me more]

To start using, there are two major things for our set up that we need to do.

	Install git on your machine

	Sign up for Github

Note: Gitlab is much the same, but a different layout. For this tutorial, we are using Github.

Set up on your machine

You will only have to do the following once on your current machine.

Install Git

	Mac: Run this on your commandline: brew install git

	If you do not have homebrew, you will need to install homebrew, then rerun the command above.

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

	Windows: If you’re already using Cygwin, follow these instructions [http://www.celinio.net/techblog/?p=818] to install Git inside Cygwin. If you’re not using Cygwin, download and install the following: http://msysgit.github.io

More info: http://git-scm.com/book/en/Getting-Started-Installing-Git

Copy the class repo to your computer

This is to make sure that your setup works.

cd into the folder where you want the folder to be

git clone https://github.com/ireapps/scraping-class.git

Now, you should be able to cd into the folder and run some of the class scripts that are located in the git repository: https://github.com/ireapps/scraping-class

Try the following:

cd scraping-class/scrapers/crime/
python jailscrape.py

This should produce an output and create a csv in the crime folder.

ls
README.md jailscrape.py out-using-requests.csv

Let’s sign up for Github and create our own repos!

Sign up for Github

Visit Github.com and create your user name and password

 [image: Github homepage]

Select the free plan

 [image:]

Your profile page (or in this case, Ellie’s [https://twitter.com/ellie_the_brave] profile page)

 [image: Github profile page]

Set your username and email up on your machine

When we interact with Git from the command line, this will make those interactions easier.

Enter the following commands into Terminal. Remember to replace the name and email with the user name and email that you set up your account with.

Terminal

git config --global user.name "elliethebrave"
git config --global user.email "elliesemail@somedomain.com"

If you error, you can override the error by resubmitting the same command with the correct information.

Let’s set up our first repository

In the top right of the github page, select create New Repository from the + menu next to your name on the top right.

 [image: Github create repository menu]

Then you will get a blank form to fill out.

 [image: Github create repository form]

Things to consider on this form:

	Naming the repository – choose something that means something. We named this repository ‘scraping-class’, because that is what it is.

	Description helps others who are visiting understand your code.

	Public/Private – Public means everyone sees it. Private means only you see it.

	Initialize with README.md, means you start the repo with a README file – this is important for your future self and others to understand the project.

	Add git ignore for Python repos.

	Licensing – by default you own the copyright, but you should throw one on their of you choice just to be nice to others.

Submit the filled out form.

Afterwards, Github will redirect you to the page of the repository.

Interacting with Github from the commandline

You will do most of your work from the commandline. Let’s copy our new repo to our machine via the commandline.

Cloning the repository

At the bottom of the menu on the right, you will see a box with the URL that looks like this;

[image: ../_images/0038362b04b6e149c123179d318839836ffcd66f.png]screen shot 2014-09-10 at 10 48 31 pm

That is the URL that we are going to clone to our machine locally.

Open up your Terminal window and cd into the directory where you like to put code. Below is the one that we used in the example, but you will want to make sure to use your own.

Terminal

git clone https://github.com/elliethebrave/chihuahuas.git

Afterwards, if you ls, you will see a new directory with the name of your repository. You will want to cd into that directory.

cd chihuahuas

Making a change and updating on Github

In this directory, you will find the same content that you see on the website. Let’s update the content and push to github. Open the read me from your desktop and edit it or add more information, then save it.

Afterwards, got back to Terminal and from inside the project folder, run the following:

git diff

You should see the change that you made. In my case, it looks like this:

diff --git a/README.md b/README.md
index fc5a574..f56ef88 100644
--- a/README.md
+++ b/README.md
@@ -2,3 +2,5 @@ chihuahuas
 ==========

 Chihuahuas! What's not to love?!?!
+
+This is going to be an app that allows people to share how much they love Chihauhaus with each other!

If you run

Now, we will want to ‘commit’ this change to the repository. To do so, run the following with a message between the quotes that describes the commit that you are making.

git commit -am "This commit updates the language used to describe the project."

(Note: The ‘-am’ means, add an ‘-a’ flag, and a ‘-m’ flag. An ‘-a’ flag means add all changes. While a ‘-m’ means that there is a commit message that is to be expected.)

Running this, should return something that looks like this:

[master e7a42ac] This commit updates the language used to describe the project.
 1 file changed, 2 insertions(+)

At this point, you have committed the change locally, but you need to tell Github that the change has been made by pushing it remotely. Enter the following into Terminal from the project folder:

git push origin

At this point, you will be prompted to enter your password. When it is successful, you should see something like this:

...
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 432 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://github.com/elliethebrave/chihuahuas.git
 e78e20f..e7a42ac master -> master

At this point, the changes are up on github. If you visit the project on the site you will see the commits that you pushes from the commits page [https://github.com/elliethebrave/chihuahuas/commits/master].

Let’s try the same with adding a file.

Adding a file and uploading it to Github

Start by adding a file. Let’s pretend we are going to start a script.

Add the following line to a new file and save it as ‘hello_world.py’ in the project directory:

print "Hello world."

When you run the file, python hello_world.py it will return to you “Hellow World.”

This time, if you run git diff nothing will happen. Try running a new command git status.

Read what it returns…

...
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 hello_world.py
...

So, we need to add the file. Run the following command to add it.

git add hello_world.py

Now run git status again. What does it say now? “new file”? If so, good. What else does the message tell you?

After that we want to commit the file locally, then push the addition up to Github, just like we did in the previous exercise.

git commit -am "Adding a hello world script."
git push origin

Now if you visit your repository you should see the changes you made! YAY! EXCITING!

Helpful links

This document has some helpful resources that were mentioned during class.

General links

Notes from class [https://docs.google.com/document/d/1VvwGSCXynKJuq0-ATOITo9doUPPoX5WARS3I71o6glE/edit] taken by Sean Sposito [https://twitter.com/seansposito]

A few examples [https://docs.google.com/spreadsheets/d/16y8OOgZ_pD1utdt9oEjfH-EUoh5UsCpmkIl7QyUJUYs/pubhtml] of projects that use scraping that we thought would be helpful.

Plus, examples of scraping projects [https://docs.google.com/spreadsheet/ccc?key=0AnUC82F2CpjJdFJoOGh4VHpiVFZsbkdQbXkxa0VTVXc&usp=sharing] generated by the NICAR community.
Feel freel to add or edit to this. This is a work in progress.

PyPi [https://pypi.python.org/pypi] is a directory of open source Python libraries. When you pip install a package, this is where pip looks for package information.

Setup & Commandline Review

	Setting up python on Mac [http://docs.python-guide.org/en/latest/starting/install/osx/]

	Setting up python on Windows [http://docs.python-guide.org/en/latest/starting/install/win/]

	Commandline crash course [http://cli.learncodethehardway.org/book/]

Intro to Python – Discussion about Math

	Floating Point Arithmetic: Issues and Limitations [http://docs.python.org/2/tutorial/floatingpoint.html#tut-fp-issues]

	How do I round to 2 decimals? [https://gist.github.com/jackiekazil/6201722]

Writing our scraper

Libraries

	Python Standard Libraries [http://docs.python.org/2/library/]

	urllib2 [http://docs.python.org/2/library/urllib2.html]

	BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/]

As we build out our scraper, we come across issues. The easiest way to troubleshoot the problem is to google for the error. Another place to go is to the python docs.

	Python Docs: Errors and Exceptions [http://docs.python.org/2/tutorial/errors.html]

	HTTP Status Codes [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes]

	Cronjobs [http://www.cyberciti.biz/faq/how-do-i-add-jobs-to-cron-under-linux-or-unix-oses/] are used to set up scheduling for your script. The link is a simple script to get you started. The one thing to note is that a cronjob should be set up on a computer that is constantly connected to the internet – such as ones that serve websites, because if you computer is not, then it won’t be able to run. You can set this up on a computer/server from Amazon’s EC2. There can be an associated cost, but these are low, unless you are trying to process all the Twitters.

Community groups to check out

	NICAR listserv [http://www.ire.org/resource-center/listservs/subscribe-nicar-l/] – of course

	PythonJournos listserv [https://groups.google.com/forum/#%21forum/pythonjournos]

	Your local Hacks/Hackers. Example: Hacks/Hackers in Columbia [http://www.meetup.com/hackshackersIRE/]

	PyLadies [http://www.pyladies.com/]

	Your local Python community group. Example: PyComo [http://www.meetup.com/pyCOMO/]

Examples, fun projects, and readings

	Just came across this neat little application of scraping to solve a real world dirty data problem. Not entirely relevant, but neat [http://www.p-value.info/2013/09/matching-misspelled-brand-names-easy-way.html]

Useful libraries

Per a request from class, here are links to some useful libraries for common data journalism tasks:

Scraping

	BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/]: Extracts things from HTML.

	Mechanize [http://wwwsearch.sourceforge.net/mechanize/]: Emulates a browser.

	urllib2: Opens URLs. Part of the standard library.

Connecting to databases

	MySQL-python [https://pypi.python.org/pypi/MySQL-python]: Tool for Python to connect with MySQL.

	pyscopg2 [http://initd.org/psycopg/docs/]: Allows Python to connect with PostgreSQL

	pymssql [http://pymssql.sourceforge.net/]: Allows Python to connect with SQL Server.

Data analysis

	numpy [http://www.numpy.org]: A library for linear algebra and other more advanced mathematical operations.

	scipy [http://www.scipy.org]: An extension of numpy for scientific computing. Useful for tasks like computing similarity martices, among many, many other things.

	pandas [http://pandas.pydata.org]: Sort of like R, but in Python.

	scikit-learn [http://www.scikit-learn.org]: Great, easy-to-use library for simple machine learning.

	nltk [http://www.nltk.org]: The standard for natural language processing in Python.

	networkx [http://networkx.github.io/%E2%80%8E]: Standard tool for creating and analyzing network graphs.

	matplotlib [http://www.matplotlib.org]: Makes graphs and other simple data visualizations.

Data cleaning

	re: Lets you parse strings with regular expressions. Part of the standard library.

	csv: Lets you read and write csvs. Part of the standard library.

	nameparser [http://code.google.com/p/python-nameparser]: Parses name strings into first, last, middle, etc.

How to Ask Questions

Inevitably, we’ll all need to ask for some coding help. It doesn’t matter if you’re emailing an instructor, emailing a listserv (i.e. NICAR [http://www.ire.org/resource-center/listservs/subscribe-nicar-l/] or PyJournos [https://groups.google.com/forum/#%21forum/pythonjournos]), posting on Stack Overflow [http://stackoverflow.com/], or even just tweeting out a question, here are some guidelines that will help you get answers:

1. Do your own research first

Many times, someone else has had the same question as you, and asked that question on the Internet. Google your problem [http://knightlab.northwestern.edu/2014/03/13/googling-for-code-solutions-can-be-tricky-heres-how-to-get-started/] or search listserv archives. Try any of the solutions you find to see if it works for you. If it does, then you’re done!

If solutions aren’t working, keep track of what you’ve tried, as well as what happened when you tried them. When you post your question, you’ll want to explain what you’ve already done.

2. Be specific

When asking your question, be specific. This means your post should include:

	The tools you’re using

	What you’re trying to accomplish – what should be happening if everything worked?

	The code you’re using (or just the relevant parts)

	Any error messages you got

	What you’ve tried already, and what happened

Let’s look at an example email or post, looking for programming help:

I’m trying to scrape the Boone County inmate roster using Python, and the requests and BeautifulSoup packages. So far, I’m only trying to get requests and BeautifulSoup working.

Here’s my code:

import requests
import csv
from BeautifulSoup import BeautifulSoup

url = 'http://www.showmeboone.com/sheriff/JailResidents/JailResidents.asp'

response = requests.get(url)
html = response.content
soup = BeautifulSoup(html)

print soup
The error I’m getting says:

Traceback (most recent call last):
 File "test.py", line 3, in
 from BeautifulSoup import BeautifulSoup
ImportError: cannot import name BeautifulSoup

 Inspecting a Web Page

Inspecting a Web Page

A webpage is made of three major components:

	HTML – Hypertext Markup Language – This is creates the structure of a webpage.

	CSS – Cascading Style Sheets – This creates the style on a webpage.

	Javascript – This is used to create interactive effects on a webpage.

For our use cases, the most important part is the HTML.

General HTML

In order to scrape a website, we need to understand what each of these pieces do. HTML is the frame work contains the content of a page. Without HTML, you do not have a webpage.

To view the HTML code, open up Chrome, load your web page [http://www.showmeboone.com/sheriff/JailResidents/JailResidents.asp], and right click on ‘View Source’.

[image: ../_images/6c1510e384897d0910b27e56190ff126c659576e.png]screen shot 2013-10-11 at 3 39 09 pm

HTML has markers that denote the start and end of the HTML <html></html>. Inside the html tag, there are two main sections that are the head and the body.

<html>
	<head>
	</head>
	<body>
	</body>
</html>

In the case of well formatted HTML, the page will be made of nested HTML elements. In all our examples, we have decently formatted html. There are cases in the real work where this is not the case. Then solving for this becomes an additional problem to solve for.

The part that we are interested in is the body tag. Some where in there lies our content. To acces this more easily, we will use Chome’s inspector. Right click on the table of data that you are interested in and select ‘inspect element’.

[image: ../_images/787fb2f153be42217e22f03fcf6d606ef71fe786.png]Inspect the element

Your browser will open Chrome’s inspector and display the HTMLs and highlights the code where the table is.

[image: ../_images/95fa4572a6da150090552972fffc9b589638a42a.png]Inspector with the highlighted element

There are many ways to grab content from HTML. In our case, we extract content by the ‘id’ or ‘class’. These are called CSS selectors. An ‘id’ ids a specific item on a page. If used corrected, there should be only one ‘id’ on page, but it is always not used correctly. A ‘class’ ids a specific type of item on a page. So, there maybe may instances of a class on a page.

In our crime example, there is only table. The table is identified by a class.
<table class="resultsTable" style="margin: 0 auto; width: 90%; font-size: small;">
While this example only has one instance of the class, it should be noted that it is possible that there maybe multiple instances of class="resultsTable" on the page.

Inspecting a form

In our second example script [http://mapyourtaxes.mo.gov/MAP/Employees/Employee/searchemployees.aspx], we are trying to scrape data that we get back from a form. In the simple script, we start with a default url, but in salaries-full.py [https://github.com/ireapps/scraping-class/blob/master/scrapers/salaries/salaries-full.py] and salaries-mechanize.py [https://github.com/ireapps/scraping-class/blob/master/scrapers/salaries/salaries-mechanize.py], we identify the form and set the search in python.

Looking at our example, search and find the form tag that is wrapped about the fields that are you interested in. Most of the time, this is tightly wrapped around the fields, however in this case, the <form></form> is wrapped around the whole page. This is not the best designed HTML page, but it still works, so that’s all we care about.

<form name="ctl01" method="post" action="searchemployees.aspx" id="ctl01">

The form tag have a couple of pieces of information that we need to know.

	name – identifies the form. This must be unique.

	method – the action of the data that is being transfered. See requests section for more information on what ‘post’ means.

	id – this is a CSS Selector, which was discussed earlier. In this case the id and name is the same.

We will use the name to identify the form in our code. The reason for using the name over the id is that while ids are supposed to be unique on a page, sometimes they are not. In our code, we would be

br.select_form("ctl01")

Now, we need to identify the fields in form. On this page [http://mapyourtaxes.mo.gov/MAP/Employees/Employee/searchemployees.aspx], we will want to start by right clicking and ‘inspect element’. Do this on the form, until you identify the ‘id’ of the form value. To know that you have the right element to match to the code you are looking at, you will see it highlighted in your browser.

[image: ../_images/fb4b89787df0265aaa7d346bb435d88e18a29bd4.png]Highlighted element

For the calendar element, we can see that the name of the select tag is “SearchEmployees1$CalendarYear1$ddlCalendarYear”. If you look at salaries-full.py [https://github.com/ireapps/scraping-class/blob/master/scrapers/salaries/salaries-full.py] and salaries-mechanize.py [https://github.com/ireapps/scraping-class/blob/master/scrapers/salaries/salaries-mechanize.py], you will see the form fields that we define by using this technique. In our script, we set those fields to specific values.

Each control can be set. Dropdown lists are handled as lists, text fields take text
br.form['SearchEmployees1$CalendarYear1$ddlCalendarYear'] = ['2013']
br.form['SearchEmployees1$ddlAgencies'] = ['931']
br.form['SearchEmployees1$txtLastName'] = '%'

SPECIAL NOTE: Notice the last name field is set to a %. The % is a wildcard character. This tells the database that you want to grab everything. The other wildcard to try is *. If a web form was going to accept a wildcard, it will be one of these two. Often websites, don’t allow wildcards.

In our program, then we use these and submit the values in the form. This brings us to the idea of requests. The next section is not required understanding, but it will help in understanding how a form works.

Requests – Methods and Statuses

Request methods

Understanding a little about requests is helpful when troubleshooting what is happening on website. A request is how you communicate with the server that hosts the website that you are interacting with. For example, when you type ‘google.com’ in your browser’s address bar and press enter, you are sending a request to GET that content. There are two types of request methods that you should understand.

	GET

	POST

A GET request method is basically the retrival of the content of a web page. A POST request method is what happens when you submit information via a web form.

This is available in the Header information of a web page, which can be found in the Inspector also. When you have the Inspector open, try clicking on the ‘Network’ tab. (The default tab is Elements. The Network tab should be two over.)

[image: ../_images/53a3d2b6616d7c83e0299298d68709cd86fafe05.png]Network Tab

Now refresh the page. You will see the Network activity populate as the page loads. A web page is made of many requests. We are looking for the main one, which is the first one in this case.

[image: ../_images/1c80ce4316433a6d2f043dff96a2cb8199b140cd.png]Jail get method

Look at the line that says:

JailResidents.asp
/sheriff/JailResidents

You will see that the method is “GET”.

Now let’s try this while submitting a form for Missouri state employee salaries [http://mapyourtaxes.mo.gov/MAP/Employees/Employee/searchemployees.aspx]. Load the page. Open up the inspector. Click on the “Network” tab. Fill out the form on the web page and hit submit.

At the top of the Network tab, you will see a request that occurred when you submitted the form – the method is “POST” instead of “GET”.

[image: ../_images/535163d350473690f6897c23abb4e402d1b179d2.png]Salary posts

Request statuses

The Network tab is full of useful information. Another bit to take notice of are the values under status. These are HTTP status codes. In both of our examples, we had a 200, which is okay. The 200 is a common return value. Other return values which you may see often are the 404, which means that the content was not found and another is 301 or 302, which means that the request was redirected. Understanding these codes can help you in the troubleshooting process if the site that you requesting doesn’t seem to be behaving in the way that you expect. Wikipedia’s List of HTTP Statuses [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes] is a great reference to learn more about what these codes mean.

Header information

Lastly, you should take note of header information. This is also found in the Network tab. After you go through the process of loading a request, click on the name and path column on the left. You will load more detailed information for that name and path on the right. The default tab is the Headers tab.

[image: ../_images/496f02a6c03d1f5e8e6ac3d3ee738c2deac83424.png]Headers sample info

The Headers tab includes information like the request method and the status, but a lot more also.

Request URL:http://mapyourtaxes.mo.gov/MAP/Employees/Employee/SearchEmployees.aspx
Request Method:POST
Status Code:200 OK
..... more

Notice near the bottom of the content we have our form variables that are being submitted as part of the request made.

SearchEmployees1$CalendarYear1$ddlCalendarYear:2013
SearchEmployees1$ddlAgencies:931
SearchEmployees1$txtLastName:
SearchEmployees1$txtFirstName:
SearchEmployees1$btnSearch:GO
..... more

If you have any questions regarding this content, please submit it as an issue and someone will add more clafication or details.

 Getting started with Python

Getting started with Python

Python is a rich and fully featured language that can be used for almost any application you can imagine, from building websites to running robots. A thorough overview of the language would take months, so our class is going to concentrate on the absolute basics – basic programming principles and syntax quirks that you’re likely to encounter as you start learning how to program. This isn’t intended to be a comprehensive Python tutorial. It’s only meant to give you the basic skills you’ll need to succeed in this course. That said, I would highly encourage you to explore the language further and will provide materials to do so at the end of this guide.

How to run a Python program

Most Python code is run directly from the command line, which explains why it is so important that you master some command line basics. Recall from the command line tutorial [https://github.com/ireapps/scraping-class/blob/master/notes/command-line-basics] that Python files have the file extension “.py”. Any time you see a “.py” file, you can run it from the command line simply by typing python filename.py, where filename is the name of whatever the file is. That’s it. And it works for both OSX and Windows.

Python also comes with a very neat feature called an interactive interpreter, which allows you to execute Python code one line at a time, sort of like working from the command line. We’ll be using this a lot in the beginning to demonstrate concepts, but in the real world it’s often useful for testing and debugging. To open the interpreter, simply type python from your command line, and you should see a screen that looks like this:

[image: ../_images/601176afff70e9e1cf480b380a249808533133ad.png]Python interactive interpreter

We’ll get into more detail about that later.

Variables and data types

No matter whether you’re working in Python or another language, there are a handful of basic concepts you need to understand if you’re going to be writing code. We’ll walk through those here.

Variables

Variables are like containers that hold different types of data so you can go back and refer to them later. They’re fundamental to programming in any language, and you’ll use them all the time. Here’s an example

greeting = "Hello, world!"
print greeting

In this case, we’ve created a variable called greeting and assigned it the string value “Hello, world!”. If we use the print command on the variable, Python will output “Hello, world!” to the terminal because that value is stored in the variable.

In Python, variable assignment is done with the = sign. On the left is the name of the variable you want to create (it can be anything) and on the right is the value that you want to assign to that variable. Variables can also contain many different kinds of data types, which we’ll go over next:

Data types

You may remember from earlier data journalism classes that data comes in different types and flavors. There are integers, strings, floating point numbers (decimals), and other types of data that languages like SQL like to deal with in different ways. Python is no different. In particular, there are six different data types you will be dealing with on a regular basis: strings, integers, floats, lists, tuples and dictionaries. Here’s a little detail on each.

Strings: Strings contain text values like the “Hello, world!” example above. There’s not much to say about them other than that they are declared within single or double quotes like so:

greeting = "Hello, world!"
goodbye = "Seeya later, dude."
favorite_animal = 'Donkey'

Note that either single or double quotes are allowed.

Integers: Integers are whole numbers like 1, 2, 1000 and 1000000. They do not have decimal points. Unlike many other variable types, integers are not declared with any special type of syntax. You can simply assign them to a variable straight away, like this:

a = 1
b = 2
c = 1000

Floats: Floats are a fancy name for numbers with decimal points in them. They are declared the same way as integers but have some idiosyncracies we’ll discover later:

a = 1.1
b = 0.99332
c = 100.123

Lists: Lists are collections of values or variables. They are declared with brackets like these [], and items inside are separated by commas. They can hold collections of any type of data, including other lists. Here are several examples:

list_of_numbers = [1, 2, 3, 4, 5]
list_of_strings = ['a', 'b', 'c', 'd']
list_of_both = [1, 'a', 2, 'b']
list of lists = [[1, 2, 3], [4, 5, 6], ['a', 'b', 'c']]

Lists also have another neat feature: The ability to retrieve individual items. In order to get a specific item out of a list, you first need to know its position in that list. All lists in Python are zero-indexed, which means the first item in them sits at position 0. For example, in the list ['a', 'b', 'c', 'd'], the letter “a” is at position 0, “b” is at position 1, etc.

The syntax for extracting a single item from the list using those indexes also uses brackets and looks like this:

list_of_strings = ['a', 'b', 'c', 'd']
the_letter_a = list_of_strings[0]
the_letter_c = list_of_strings[2]

You can also extract a range of values by specifiying the first and last positions you want to retrieve with a colon in between them, like this:

list_of_strings = ['a', 'b', 'c', 'd']
the_letters_a_b_c = list_of_strings[0:2]

Tuples: Tuples are a special type of list that cannot be changed once they are created. That’s not especially important right now. All you need to know is that they are declared with parentheses (). For now, just think of them as lists.

tuple_of_numbers = (1, 2, 3, 4, 5)
tuple_of_strings = ('a', 'b', 'c', 'd')

Dictionaries: Dictionaries are probably the most difficult data type to explain, but also among the most useful. In technical terms, they are storehouses of key/value pairs. You can think of them like a phonebook. An example will make this a little more clear, but know for now that they are declared with curly braces.

my_phonebook = {'Chase Davis': '713-555-5555', 'Mark Horvit': '573-555-5555'}

In this example, the keys are the names “Chase Davis” and “Mark Horvit”, which are declared as strings (Python dictionary keys usually are). The values are the phone numbers, which are also strings, although dictionary values in practice can be any data type. If I wanted to get Chase Davis’ phone number from the dictionary, here’s how I’d do it:

my_phonebook['Chase Davis']

Which would return the string ‘713-555-5555’. There’s a lot more to dictionaries, but that’s all you need to know for now.

Control structures

If you, think of a Python script as a series of commands that execute one after another you might imagine it would be helpful to be able to control the order and conditions under which those commands will run. That’s where control structures come in – simple logical operators that allow you to execute parts of your code when the right conditions call for it.

For our purposes, there are two control structures you will use most often: if/else statements and loops.

If/else statements

If/else statements are pretty much exactly what they sounds like. If a certain condition is met, your program should do one thing; or else it should do something else.

The syntax is pretty intuitive – except for one extremely important thing: In Python, whitespace matters. A lot. It’s easiest to demonstrate this with an example:

number = 10
if number > 5:
 print "Wow, that's a big number!"

There’s a lot to unpack here, but first take note of the indentation. It helps sometimes to think of your program as taking place on different levels. In this case, the main level of our program (the one that isn’t indented) has us declaring the variable number = 10 and setting up our if condition (if number > 5:). The second level of our program executes only on the condition that our if statement is true. Therefore, because it depends on that if statement, it is indented four spaces underneath that statement.

If you look closely, there’s a small detail that can help you remember when a program moves from one level to another: namely, the presence of a colon. When we declare an if statement, we always end that line with a colon. The colon is our way of telling Python that it should start another level in the program, and everything on that level must be indented accordingly.

If we wanted to continue our program, we could do something like this:

number = 10
if number > 5:
 print "Wow, that's a big number!"

print "I execute no matter what your number is!"

The last statement doesn’t depend on the if statement, so it’s back on the main level again.

Notice that I said indents must be four spaces. Four spaces means four spaces – NOT A TAB. TABS AND SPACES ARE DIFFERENT. YOU MUST PRESS THE SPACE BAR FOUR TIMES WHENVER YOU INDENT PYTHON CODE. There are some text editors that automatically convert tabs to spaces, and once you feel more comfortable, you might want to use one. But for now, get in the habit of making all your indents FOUR SPACES.

Now with that being said, let’s unpack the rest of our if statement:

number = 10
if number > 5:
 print "Wow, that's a big number!"

Our little program in this case starts with a variable, which we’ve called number, being set to 10. That’s pretty simple, and a concept you should be familiar with by this point. The next line, if number > 5: declares our if statement. In this case, we want something to happen if the number variable is greater than 5.

Most of the if statements we build are going to rely on equality operators like the kind we learned in elementary school: greater than (>), less than (<), greater than or equal to (>=), less than or equal to (<=) and plain old “equals”. The equals operator is a little tricky, in that it is declared with two equals signs (==), not one (=). Why is that? Because you’ll remember from above that a single equals sign is the notation we use to assign a value to a variable! Single equals signs are for assignment (number = 5); double equals signs are for equality (if number == 5:). File that one away somewhere. It’s important.

Now let’s talk about the next part of the if statement – the else clause. You’ll notice from the program above that the else clause isn’t required. You don’t need to have an else condition for your if statements, but sometimes it helps. Consider this example:

number = 10
if number > 5:
 print "Wow, that's a big number!"
else:
 print "Gee, that number's kind of small, don't you think?"

In this case, we’re telling our program to print one thing if number is greater than 5, and something else if it’s not. Notice that the else statement also ends with a colon, and as such its contents are also indented four spaces.

For loops

Remember earlier we discussed the concept of a list – the type of variable that can hold multiple items in it all at once. Many times during your programming career, you’ll find it helps to run through an entire list of items and do something with all of them, one at a time. That’s where for loops come in.

Let’s start by having Python say the ABC’s:

list_of_letters = ['a', 'b', 'c']
for letter in list_of_letters:
 print letter

The output of this statement, as you might guess, would be “a b c”. But there are still a few things to unpack here – some familiar and some not.

First you’ll notice from looking at the print statement that our indentation rules still apply. Everything that happens within the for loop must still be indented four spaces from the main level of the program. You’ll also see that the line declaring the loop ends in a colon, just like the if/else statement. That’s an indication that indentation will be necessary.

Second, turn your attention to the syntax of declaring the loop itself: for letter in list_of_letters:

All of our for loops start, unsurprisingly, with the word for and follow the pattern for variable_name in list:. The variable_name can be anything you want – it’s essentially just a new variable you’re creating to refer to each item within your list as the for loop iterates over it. You can call this whatever you want. In this case it’s letter, but you could just as easily call it donkey, like so:

list_of_letters = ['a', 'b', 'c']
for donkey in list_of_letters:
 print donkey

The next thing you have to specify is the list you want to loop over, in this case list_of_letters. The line ends with a colon, and the next line starts with an indent. And that’s the basics of building a loop!

Functions

Often it’s helpful to encapsulate a sequence of programming instructions into little tools that can be used over and over again. That’s where functions come in.

Think of functions like little black boxes. They take input (known as arguments), perform some operations on those arguments, and then return an output. In Python, a simple function might take an integer and divide it by two, like this:

def divide_by_two(input_integer):
 return input_integer / 2

In order to call that function later in the program, I would simply have to invoke its name and feed it an integer – any integer at all – like so:

print divide_by_two(10)

In which case it would return the number 5.

The black box analogy is the key thing to understand about functions. Once you write one (assuming you do so correctly), you don’t need to know how it works. You can just feed it an input and expect an output in return.

As for how functions are declared, you’ll notice a couple new details as well as some similarities to loops. First, every function must be declared by the word def, which stands for “define”. That is followed by the name of the function (you can call it anything you want, but as always, it should ideally make some kind of logical sense), and then a set of parentheses in which you can define the arguments a function should expect.

In our example above, our divide_by_two function expects one argument, which we’ve called input_integer – basically the number that we want to divide by two. When we feed it the number 10, like this print divide_by_two(10), a variable by the name of our argument is created so that we can process it within the function. In that way, the name you give the argument works almost like the variable you create in a for loop: it’s a reference to whatever argument you pass in that applies only within the body of the function.

After you finish declaring arguments, you’ll see something familiar – namely a colon, just like the ones in our if statements and for loops. And that means the next line must be indented four spaces because any code within the function is nested one level deeper than the base level of the program.

The final thing you’ll need to know about function notation in Python is that most functions return some kind of output. Arguments go in, some processing happens, and something comes out. As you probably guessed, it’s the return statement that tells the function to return it output.

It’s worth pointing out that functions don’t necessarily need arguments, nor do they always need to return a value using the return command. You could also do something like this:

def say_hello():
 print "Hello!"

But the idea of arguments and return values are still fundamental in understanding functions, and they will come up more often than not.

Object-oriented programming

The next and final concept we’ll introduce is the idea of object-oriented programming. OOP, as it’s known for short, is a complex subject that can easily take up a semester in an introductory computer science program. We’re only going to scratch the surface here, but it should be enough to get you started.

Python as a toolbox

The first thing you should know is that Python is basically a collection of tools. In fact, Python has tools for pretty much everything you’d ever want to do with a programming language: everything from navigating the web to scraping and analyzing data to performing mathematical operations to building web sites. Some of these are built into a toolbox that comes with the language, known as the standard library. Others have been built by members of the developer community and can be downloaded and installed from the web. There are two ways to import these tools into your scripts, which we’ll demonstrate here:

To pull in an entire toolkit, use the import command. In this case, we’ll get the urllib2 package, which allows us to visit websites with Python:

import urllib2

You can also import specific tools from a toolkit using similar syntax:

from urllib2 import urlopen

In practice, you’ll use both of these methods. It’s worth noting that most of the time, any import statements you execute will be at the top of your program.

Objects as tools

It’s one thing to pull a hammer from the toolbox, but it’s quite another to use it for actually hammering nails.

Pretty much everything you every work with in Python – external libraries, variables, you name it – is considered an object. Objects, in the OOP world, have a couple of properties: they have characteristics that describe them, known as *attributes, and actions they can perform, known as methods. In our hammer example, our hammer might have an attribute of “color” or “weight” and a method called “pound”. Let’s see how this applies to one of the first things we learned: Python strings.

Say you’ve created a string variable my_string = 'Hello!'. Just like the hammer, the string has certain attributes that can describe it and certain methods it can perform. For example, calling print my_string.upper() will return HELLO!. That is because all Python strings come with a method called upper(), which returns an all-uppercase representation of that string.

You can see how this might be useful. Tools like this allow us to perform various tasks in Python without having to hard-code the operations ourselves. Lists, for example, can sort themselves with the sort() method. In general, there are a couple rules you should remember when it comes to invoking these attributes and methods:

	Python uses what’s known as dot notation to call attributes and methods. That means you will insert a period between the object you’re working with and whatever method you want it to perform. For example my_string.upper() says “perform the upper() method on the object my_string”. The dot between the two is very important.

	As a general rule in Python, methods are called with parentheses and attributes aren’t. The upper() method of my_string.upper() is a method, so it requires a set of open and closed parentheses – not unlike a function. Methods are actually close cousins of functions (they can also accept arguments). A string attribute, such as

Also, one final Pro Tip. Python has a built-in function, known as dir(), which will reveal to you a menu of all the attributes and methods a given object has. Try doing this and you’ll see what I mean dir(my_string).

 Instructions for setting up on a Mac

Instructions for setting up on a Mac

Type the word ‘Terminal’ in the Mac Search.
[image: ../_images/ffe84deb4e62e19dfb8e9c0d3fcb06ff5f4f2bd6.png]screen shot 2014-09-05 at 9 17 05 am

When you select it, Terminal will launch and it will look something like this:
[image: ../_images/508bcb8a42da68c182041d148ba34954f989fb44.png]screen shot 2014-09-04 at 6 52 47 pm

After the “$” Type:

sudo easy_install pip

Install libraries:

sudo pip install BeautifulSoup
sudo pip install Mechanize
sudo pip install Requests

Make sure that it works. Type:

python

You should see something that looks like this:
[image: ../_images/6dad646bf75ba06d5187d3f2076ea24de8521618.png]screen shot 2014-09-05 at 9 23 53 am

Your prompt has changed from this:

$

To this:

>>>

This means that you are currently in Python interpretor.

Then type the following to make sure you have the installed libraries:

import requests
import mechanize
import beautifulsoup

If nothing happens after each of those, then you are successfully setup. If you get an ‘ImportError’, then something isn’t working correctly for you. Please ask an instructor or a friend for help.

 Windows Install and Navigation

Windows Install and Navigation

Make sure that you have already installed Chrome [https://www.google.com/chrome/browser/] and Sublime Text [http://www.sublimetext.com/].

Next, we’ll be installing Cygwin, but make sure to read these instructions before you begin.

	Go to Cygwin [https://cygwin.com/install.html] and download either the 32-bit or 64-bit version of the software, based on your computer.

	Once it’s downloaded, click on the .exe to start the setup.

	Keep clicking “Next” until you see “Choose A Download Site.” Here, you can pick any of the sites listed to keep installing Cygwin. Click Next.

	When you see “Select Packages”, click into the search box and type “setuptools.”

	Click on the plus icon to open up the “Python” folder, and then click on the icon next to “python-setuptools”, no need to select “python3-setuptools.

	Click the box under column “S” so that both boxes should now be checked.

	Click next until you finish the install.

When Cygwin is finished, type the commands below into Cygwin, one line at a time, and then hit enter. When each command is finished running, type the next one.

	easy_install pip

	pip install beautifulsoup

	pip install requests

	pip install mechanize

Getting to your desktop

Now, when we start learning about the command line, type in the following to get to your Desktop via Cygwin.

	cd /cygdrive/c/Users

	ls

Now you should be about to recognize your username for your computer. Then type:

	cd WHATEVERYOURUSERNAMEIS

	ls

Now you should be able to see a long list of folders, including “Desktop”

	cd Desktop

	ls

You should now be able to see the names of the folders and files on your Desktop!

 Scraping exercises

Scraping exercises

In this class, we’ll be scraping two websites. The first is a roster of inmates at the Boone County Jail [http://www.showmeboone.com/sheriff/JailResidents/JailResidents.asp], and the second is a list of Missouri state employee salaries [http://mapyourtaxes.mo.gov/MAP/Employees/Employee/searchemployees.aspx].

We’ll do this using three of Python’s most widely used web scraping libraries, BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/], which makes it easy to parse and sort through HTML files; Requests [http://docs.python-requests.org/en/latest/], which handles HTTP (web) requests; and mechanize [http://wwwsearch.sourceforge.net/mechanize/], which allows you to emulate a web browser from within your Python programs. Detailed documentation for each of those libraries can be found at the links above.

 Exercise 1: Boone County Jail scraper

Exercise 1: Boone County Jail scraper

For this exercise, we’ll be scraping the roster of inmates at the Boone County Jail [http://www.showmeboone.com/sheriff/JailResidents/JailResidents.asp]. The scraper will use Python’s BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] toolkit to parse the site’s HTML and extract the data.

In addition to BeautifulSoup, we’ll also use the Requests library [http://docs.python-requests.org/en/latest/], which is based off of urllib2, a standard Python library and Python’s standard csv modules – to open the URL, download the HTML and ultimately save the results to a CSV file.

This exercise will build on your understanding of Python data structures like lists and strings, as well as control structures like loops. If you need to brush up on those concepts, feel free to review the Python Basics [https://github.com/ireapps/scraping-class/blob/master/python-basics/python-basics] guide included in this repository.

 Exercises 2-4: Scraping MO government salaries

Exercises 2-4: Scraping MO government salaries

The next three exercises will use several different methods to scrape the salaries [http://mapyourtaxes.mo.gov/MAP/Employees/Employee/searchemployees.aspx] of Missouri state government employees. These exercises are designed to build upon one another, using progressively more sophisticated techniques to retrieve the data and save it to CSV files.

Exercise 2: Scraping an individual page

We’ll start with the salaries-basic.py file.

This scraper retrieves an individual page [http://mapyourtaxes.mo.gov/MAP/Employees/Employee/SearchResults.aspx?last=%25&first=%25&year=2013&agency=931] of salary information and uses BeautifulSoup to parse that data into a CSV file. In many ways, it’s a repeat of the first exercise [https://github.com/ireapps/scraping-class/tree/master/scrapers/crime] we did to scrape Boone County inmates.

You’ll work through this in steps on your own, with some guidance from the coaches.

Exercise 3: Filling out forms

Next we’ll move on to the salaries-mechanize.py file, which introduces the concept of filling out forms.

Interacting with forms and other comple page elements can be among the most difficult and frustrating aspects of scraping a website. Luckily, Python’s mechanize [http://wwwsearch.sourceforge.net/mechanize/] module makes these tasks much simpler.

In this exercise, we’ll once again scrape an individual page, but we’ll navigate to that page by filling out a form.

Exercise 4: Scraping multiple pages at once

Finally we’ll work through salaries-full.py. This exercise will put together the concepts we’ve gone over so far and put them together in order to scrape multiple pages of salary data at once.

_static/up.png

_images/787fb2f153be42217e22f03fcf6d606ef71fe786.png
= Back |—
\ccola

R Forward | —
Rbn — Reload | —
{Allen

[len " SaveAs.. | —
[Anders Print... | —
Amold Translate to English
Jshford View Page Source —
[Avant View P: Infe |
fuart iew Page Info

[Baker |

9 Save to Pocket

[Ball

_images/95fa4572a6da150090552972fffc9b589638a42a.png
& = € [1 www.showmeboone.com/sheriff/JailResidents/JailResidents.asp GO0 & =

site map | print | heip | [STNIESEIETNN T3

Current Inmates of Boone County Jail
Date: 10/12/2013

resultsTable 1166px x 3521,

% | Elements | Resources Network Sources Timeline Profiles Audits Console

Styles | Computed »

v
v element.style { :
align id Last Name: margin: » 0 auto;
align id First Name: v_ud1_:h: v%%:

B >> Q html body | div#canvas.canvas tbody @ tr th#LN A3 #

_images/6c1510e384897d0910b27e56190ff126c659576e.png
Current Inmates of Boone County Jail

Date: 10/11/2013

Back
Middle [Gender
JAlexandria F Reload
[David M
o F Save As... oy
INathaniel M Print... solumt
[Ray M Translate to English _iolum
s o View Page Source _ TTET
fana . Solum
o i View Page Info ‘olumt
[Terell M flarsha
jackson M © Save to Pocket it
[Emery M Hturge
e z Inspect Element 0=
INicole M B [20° [Columt
[Montez M B 20 [Fulton

_images/6dad646bf75ba06d5187d3f2076ea24de8521618.png
Last login: Fri Sep 5 09:21:58 on ttys@0l
jacquelinekazil@lacquelines-MacBook-Pro:~ $ python

Python 2.7.7 (default, Jun 2 2014, 18:55:26)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> I

_images/ffe84deb4e62e19dfb8e9c0d3fcb06ff5f4f2bd6.png
5) | 2l 9 3 100% @@ = <) Fri9:17 AM

Terminal

Show All in Finder

Applications Terminal

_static/ajax-loader.gif

_images/de4fcdfeb495955f7891fa647b7d992e481148c9.png
bash bash bash

Chases-MacBook-Air-2:74462 cjdd3bs ||

_images/fb4b89787df0265aaa7d346bb435d88e18a29bd4.png
Catendar vear: Ageney:

By Last Name: select#SearchEnployeesl_Calendarvearl ddlCalendarvear 105px ~ 18px] (co)

Styles | Compute

element.style {
width: 1@5px;

¥ <select name="SearchEmployeesi$CalendarYeari$ddlCalendarYear" id=
"'SearchEmployeesl CalendarYearl ddlCalendarYear" style="width:105p
i 2013">2013</option>
2012">2012</0ption>

{
Lotrtd #SearchEmpluyees1_pnIDefauI(RV T AR (R -l select#SearchEmployees1_CalendarYearl_ddICalendarYe:
| | | | ||

select user age

_static/comment-bright.png

_images/535163d350473690f6897c23abb4e402d1b179d2.png
Name

Status.

Size

Time

Method Type Initiator Timeline
Path Text o Content | Latency 400ms 600ms| 800ms 1.00s|
SearchEmployees.aspx 200 . @l 20.0KB 620ms
/MAP/Employees/Employe oK 19.7KB 386ms

_images/53a3d2b6616d7c83e0299298d68709cd86fafe05.png
% Elements Resources | Network | Sources Timeline Profiles Audits Console

Stats rype Initiator S8 Time Timeline

Name
Method Content | Latency

Path Text

_images/496f02a6c03d1f5e8e6ac3d3ee738c2deac83424.png
Name
Path * | Headers | Preview Response Cookies Timing

a Request URL: http://mapyourtaxes.mo.gov/MAP/Employees/Employee/SearchResults.aspx?last=Johnson&first=8yea
AP ployee ployee r=0&agency=0

Request Method: POST

momap.css Status Code: @ 200 0K

/MAP/StyleSheets v Request Headers view source

commonjs Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp,*/;q=0.8
N Accept-Encoding: gzip,deflate,sdch

/MAPjJavaseript Acce:l—Languagge: gen—':JS, en;q=0.8

skip.JPG Cache-Control: no-cache

/MAP/images Connection: keep-alive

. Content-Length: 18049
spacer.gif Content-Tvpe: aoplication/x-www—form-urlencoded

_images/508bcb8a42da68c182041d148ba34954f989fb44.png
® 0 6 . A jacquelinekazil — bash — 80x24

Last login: Thu Sep 4 18:52:07 on ttys@ol
jacquelinekazil@Jacquelines-MacBook-Pro:~ $ I

_images/601176afff70e9e1cf480b380a249808533133ad.png
Last login: Fri Feb 1 15:38:41 on ttyse03

Chases-MacBook-Air-2:~ cjdd3b$ python

Python 2.7.2 (default, Dec 13 2011, 21:19:48)

[6CC 4.2.1 (Based on Apple Inc. build 5658) (LLWM build 2336.1.00)] on darwin
Type "help", “"copyright", "credits" or "license" for more information.

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/0038362b04b6e149c123179d318839836ffcd66f.png
HTTPS clone URL

https://github.con | E&

You can clone with HTTPS, SSH,
or Subversion. @

_static/down.png

_images/1c80ce4316433a6d2f043dff96a2cb8199b140cd.png
